A Year in Review: What’s New in the Veterinary Toxicology Literature

June 7, 2016

Sarah Gray, DVM, DACVECC
Emergency and Critical Care Specialist
sgray@petpoisonhelpline.com
Outsider Veterinary Medical and Surgical Group
Ventura, CA

What is Pet Poison Helpline?

• 24/7 animal poison control center
• Veterinary & human expertise
 • 20 DVMs, 35 CVTs
 • DABVT, DABT
 • DACVECC
 • DACVIM
 • 7 PharmDs
• Case fee of $49 includes
 • Unlimited consultation
 • Fax or email of case report
• Educational center
 • Free webinars (archived)
 • Tox tools
 • Wheel of Vomit
 • Pot of Poisons (toxic plants)
 • Textbook
 • iPhone app
 • Newsletters for vet professionals
 • Free resources for clinics
 • Videos
 • Electronic material
 • Clings
 • Videos
 • Electronic material
 • Clings

Email us for info!

Whole Pet from Nationwide
Carol McConnell, DVM, MBA
Chief Veterinary Officer
April 2016
The best pet insurance plan ever!

It's a new day for pet insurance. Whole Pet with Wellness is a true industry game-changer: If you examine it, prescribe it, treat it or administer it, we'll cover it.

Clients get back 90% on everything from Bordetella to bilateral ACL surgeries; from dental cleanings to dysplasias. It's serious coverage—which means serious business for you.

Quite frankly, it's the best pet insurance plan ever made. And it's only from Nationwide.

Introducing Whole Pet with Wellness!

Coverage Highlights:

- One annual deductible—not per incident
- 90% reimbursement on veterinary expenses
- All veterinary exams including specialty and emergency visits
- All hospitalization and surgeries including preventive and elective procedures
- All injuries, illnesses, and cancer including hereditary and congenital conditions
- All diagnostic testing including xrays, MRIs, CAT scans and ultrasounds
- All prescribed medications, nutritional supplements and therapeutic diets
- All preventive care including vaccinations, teeth cleaning and spay/neuter

Introducing Whole Pet with Wellness!

It's easier to tell you what we don't cover:

- Pre-existing conditions
- Boarding
- Grooming
- Tax
- Waste
Outline

• Literature Review:
 – Carprofen
 – Cocaine
 – Emesis in cats
 – Marijuana
 – Metaldehyde and iron toxicosis
 – Methionine
 – Tea Tree Oil
 – Walnuts (black walnut)
 – Xylitol

Carprofen

• Compare the effectiveness of activated charcoal alone versus the combination of emesis and activated charcoal in preventing carprofen absorption
• 6 dogs, 15mg/kg carprofen
 – At 30 mins: AC administered (2g/kg)
 – At 30 mins: Emesis + AC administered (2g/kg)
 – Control group
• Both AC and emesis + AC significantly reduced AUC and $T_{1/2}$
• AC (NOT emesis+AC) significantly reduced T_{max}

Pharmacokinetics

Carprofen

- Compare the effectiveness of activated charcoal, activated charcoal + sorbitol, and multi-dose activated charcoal in preventing carprofen absorption
- 8 dogs, 120mg/kg Carprofen + AC, ACS, MD
 - AC, ACS, and MD significantly reduced AUC
 - AC and MD (NOT ACS) significantly reduced Cmax
 - There were no differences in AUC or Cmax among the AC, ACS, and MD groups
 - MD significantly reduced T1/2 when compared to the control group.
 - T1/2 did not differ significantly among AC, ACS, and the control group
 - Tmax was not affected by any treatment

Cocaine

- Characterize the incidence, signalment, presenting complaint, history, clinical signs, diagnostic test results, complications, treatment, length of hospitalization, and outcome of dogs presenting with presumptive cocaine toxicity
- 19 dogs with + urine drug screen (March 2004 to March 2012)
 - Neurological abnormalities = all dogs
 - Mydriasis (11/19 [58%])
 - Hyperexcitability/hyperesthesia (10/19 [53%])
 - Ataxia (8/19 [42%])
 - Focal or generalized muscle tremors (8/19 [42%])
 - Reduced mental awareness (6/19 [32%])
 - Seizures (5/19 [26%])
 - Other signs included weakness (7/19 [37%]), vomiting (6/19 [32%]), and lethargy (3/19 [16%])
- CV signs:
 - Tachycardia (10/19 [53%])
 - Hypertension (4/19 [21%])
 - Hyperthermia (5/19 [26%])
- Blood work: hyperglycemia (4/19 [21%]) dogs and hyperlactatemia (9/19 [47%])
Cocaine

- Treatment:
 - None (3/19 dogs)
 - 16/19 hospitalized (median 15hrs (range 10-30hrs)
 - All dogs received IV fluid therapy
 - 9/16 received benzodiazepines (seizure vs sedation)
 - 2/3 refractory to benzodiazepines (Phenobarbital vs propofol)
 - 4 dogs received acepromazine for sedation when benzodiazepines were ineffective
- Hypertension and tachycardia generally responded to sedatives; one case received esmolol CRI
- Prognosis for survival was good, with supportive care

Emesis Induction in Cats

IM Dexmedetomidine and Xylazine Comparison

<table>
<thead>
<tr>
<th></th>
<th>47 cats</th>
<th>24/47 (51.1%) vomited successfully</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xylazine</td>
<td>21 xylazine</td>
<td>9/21 (43%) successful</td>
</tr>
<tr>
<td>Dexmedetomidine</td>
<td>26 dexmedetomidine</td>
<td>15/26 (58%) successful</td>
</tr>
</tbody>
</table>

Xylazine

- 10/21 (48%) < 0.44mg/kg
- 11/21 (52%) ≥ 0.44mg/kg

Dexmedetomidine

- 13/26 (50%) > 10μg/kg
- 13/26 (50%) ≤ 10μg/kg

Not significant (P=0.31)

- Median dose of xylazine 0.43 mg/kg
- Range: 0.36 to 0.64 mg/kg

- Median dose of dexmedetomidine 7μg/kg
- Range: 0.96-10μg/kg

Not significant (P=0.53)

Mean ± SD dose of dexmedetomidine administered was 11 ± 3 μg/kg

Emesis Induction in Cats

- 7 cats (22%)
 - IM in 4 cats (median dose of 7.0μg/kg (range 7-10μg/kg)
 - IV in 3 cats (median dose of 3.5μg/kg (range 0.96-10μg/kg)

- 7 cats (22%)
 - Xylazine: 25 (58%) cats, median dose 0.44 mg/kg; range 0.4-0.5 mg/kg
 - Dexmedetomidine: 16 (37%) cats, median dose 3μg/kg (range 0.96-10μg/kg)

- 7 cats (22%)
 - Hydrogen peroxide (1.5-2.0 mL/kg)
 - No emesis

Emesis Induction in Cats

- 24/43 (56%) cats vomited
 - 11/25 (44%) Xylazine
 - 13/16 (81%) Dexmedetomidine
- Compared with xylazine, dexmedetomidine was significantly more likely to result in emesis (P = 0.018)
- Emesis was successfully induced in 7 of 7 (100%) with IM dexmedetomidine and in 6 of 9 (67%) with IV dexmedetomidine
- IM vs IV efficacy was not significantly different (P=0.212)

Marijuana

- Retrospective case series:
 - Jan 1, 2005 to Oct 1, 2010
- 125 dogs: known or suspected marijuana exposure
- Purpose of the study:
 - Determine if there was a correlation between the increasing number of medical marijuana licenses and marijuana toxicity in dogs
 - Also to report on the utility of a UDST to diagnose marijuana ingestion in dogs

Marijuana

- Clinical signs:
 - Ataxia (88%)
 - Mentally dull/obtunded/disoriented (53%)
 - Mydriatic pupils (48%)
 - Urinary incontinence (47%)
 - Hyperesthesia (47%)
 - Tremors, shaking, or twitching (30%)
 - Vomiting (27%)
- Combined marijuana and chocolate toxicity occurred in 21% of dogs
- Over half (58%) of the dogs were treated as outpatients
- 2 dogs died
Marijuana

• Group 1: positive UDST, and known marijuana ingestion, known exposure in their environment, and highly suspected by the clinician or owner
• Group 2: negative UDST and known marijuana ingestion
• Group 3: not tested with a UDST, but had a known marijuana ingestion

• Groups 1–3 combined: total number of marijuana toxicosis cases increased 4-fold from 2005 to 2010 (correlation coefficient 0.959 (P = 0.002)) when compared to the rise in medical marijuana registered card holders.

Marijuana

• Why? Six dogs (known THC ingestion) and a negative UDST...
• The limit of detection of the THC is 50 ng/mL
• False negatives may be seen with testing too recently after exposure
• In addition to 11-OH-Δ9-THC, dogs also metabolize THC to 8-OH-Δ9-THC with additional β-oxidation
This may contribute false negatives when using the human UDST

Metaldehyde and Iron phosphate

• A pesticide incident database from the NPIC was searched between October 1, 2000, and September 30, 2011
• 50 Metaldehyde products and 28 Iron phosphate products registered by EPA
• Purpose of the study: Report metaldehyde and iron phosphate exposures in animals, characterize iron phosphate exposure incidents in dogs for which signs compatible with iron toxicosis
• Decreased incidence in metaldehyde since 2006
• 1,500 reported exposures to molluscicides containing metaldehyde (n = 1,285) or iron phosphate (n = 215)
• 35 deaths associated with metaldehyde, none with iron phosphate

Iron Toxicosis

- MOA: Iron intake \rightarrow GI epithelium absorption \rightarrow bound to ferritin \rightarrow in the circulation it is carried on transferrin; when these iron binding proteins are saturated \rightarrow TOXICOSIS
- Iron excretion - GI tract via epithelial cell sloughing OR blood loss
- Iron \rightarrow free radicals \rightarrow tissue damage (GI, vascular, liver, heart)

- Clinical signs:
 - STAGE 1: (0–6hrs) Damage to the gastric mucosa, depression, abdominal pain, vomiting and diarrhea (+/- blood)
 - STAGE 2: (6–24hrs) Apparent recovery
 - STAGE 3: (12–96hrs) GI signs return, weakness, shock, GI hemorrhage, tachycardia, cardiovascular collapse, coagulation disorders, and possibly death
 - STAGE 4: (2–6wks) Repair of GI injury \rightarrow fibrosis (not as commonly as stages 1–3)

Metaldehyde and Iron Phosphate

- Subset evaluation: 56 reports involving 61 dogs with suspected iron toxicosis
 - 31/56 (55%) reports involving 34 dogs - exposure occurred after the molluscicide product was applied to a surface
 - 11 (20%) reports involving 12 dogs – exposure to stored product

- Vomiting: most common clinical sign (40/56 [71%] reports involving 43 dogs)
- Diarrhea (24/56 [43%] and hemochezia (n=4)
- Lethargy (14/56 [25%] reports involving 15 dogs)
- Combinations (of above signs) in 21 (38%) reports involving 21 dogs

Methionine

- Descriptive study: Signalment, clinical findings, onset of signs, outcome, and prognosis
- Retrospective: January 2001 to December 2012
- 1,197 calls: 1,525 animals with potential methionine intoxication

- Dosage ranged from 3.9 to 23,462 mg/kg
- Sources: Lawn saver products
 - Other sources (not included in this study) multivitamins, joint care supplements & SAMe
- Females (55%), males (44%)
Methionine

- Vomiting: occurred mean 2.8hrs (5mins - 9hrs)
- Ataxia: occurred mean 6.8hrs (1hr - 18hrs)
- Resolution of signs (92%) w/in 18hrs – 24hrs, all by 48hrs
- 33% each: at home care, outpatient DVM, hospitalized DVM care
- No fatalities
- Treatment
 - Decontamination (emesis w/in 2-4hrs)
 - IVF therapy, GI supportive therapy, safe housing
 - Correction of electrolyte and acid/base abnormalities

<table>
<thead>
<tr>
<th>Sign</th>
<th>Affected dogs</th>
<th>% affected dogs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vomiting</td>
<td>623</td>
<td>31.6</td>
</tr>
<tr>
<td>Ataxia</td>
<td>386</td>
<td>19.6</td>
</tr>
<tr>
<td>Lethargy</td>
<td>94</td>
<td>4.8</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>63</td>
<td>3.2</td>
</tr>
<tr>
<td>Abnormal posture</td>
<td>53</td>
<td>2.7</td>
</tr>
<tr>
<td>Weakness</td>
<td>46</td>
<td>2.4</td>
</tr>
<tr>
<td>Polydipsia</td>
<td>40</td>
<td>2.0</td>
</tr>
<tr>
<td>Disorientation</td>
<td>28</td>
<td>1.4</td>
</tr>
<tr>
<td>Hypermetria</td>
<td>20</td>
<td>1.0</td>
</tr>
<tr>
<td>Vocalization</td>
<td>20</td>
<td>1.0</td>
</tr>
<tr>
<td>Tremors</td>
<td>20</td>
<td>1.0</td>
</tr>
<tr>
<td>Anorexia</td>
<td>20</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Acidosis (9 cases), hypokalemia (8 cases), and hyperglycemia (7 cases)

Tea Tree Oil

- Retrospective study: Review of toxicosis from the use of 100% TTO in dogs and cats, focusing on clinical signs (onset time, types, frequency, duration, and severity) epidemiological information, and treatment
- Australian tree tea oil or melaleuca oil: Obtained by steam distillation of the freshly harvested leaves of Melaleuca alternifolia tree leaves
 - Rapidly absorbed orally or via skin due to lipophilic nature
 - >100 components, terpenes predominate (50-60%)
 - Marketed as an antiseptic, fungicide, and skin care agent
- 337 dogs / 106 cats, Jan 2002 to Jan 2012
- Major 31 (7%), moderate 248 (50%), mild 161 (36%)
- Intentionally applied 89%, accidental exposure 2%, unknown 9%
 - Cutaneous (50%), cutaneous & oral (30%), oral (15%), aural (3.6%), IV (1%)

Tea Tree Oil

Dogs
- Major 18 (5%)
- Moderate 215 (64%)
- Mild 102 (30%)
 - 2 dogs died
- Clinical signs:
 - Lethargy 18 (43%)
 - Paresis/hind limb weakness 150 (45%)
 - Ataxia 144 (43%)
 - Tremors 34 (10%)
 - Vomiting 20 (6%)
 - Coma 15 (5%)
 - Skin 3 (4%)
 - Increased liver enzymes (2%)

Cats
- Major 13 (12%)
- Moderate 33 (31%)
- Mild 59 (56%)
 - No deaths reported
- Clinical Signs:
 - Drooling 47 (44%)
 - Ataxia 24 (23%)
 - Lethargy 21 (20%)
 - Coma 17 (16%)
 - Tremors 10 (9%)
 - Hypothermia 8 (8%)
 - Skin 2 (2%)

Tea Tree Oil

Treatment:
- Decontamination: bathing with dish soap, e-collar to prevent grooming (cats), single dose of AC/C
- **NO EMESIS = concern for terpenes (high viscosity molecule) and aspiration risk**
- General supportive care (heat, positional, respiratory, CV, etc)
- Tremors = methocarbamol vs diazepam
- Hepatoprotectants = SAMe, Denamarin, Milk Thistle, etc

Walnut (black walnut tree)

Purpose of the study: Identify clinical signs associated with oral exposure to black walnut tree (Juglans nigra) wood, nuts, or nut hulls in dogs
- Compare clinical syndromes between wood ingestion and walnuts or nut hulls
- 93 dogs, Nov 2001 and Dec 2012
- 28 (30%) dogs: wood (50%) or wood shavings (50%)
- Most commonly reported in January, February, and April (12/28 cases)
- Primarily eastern North America
- Time to onset 0.17-19hrs
- The most commonly reported clinical signs for this group of dogs included lethargy or subdued behavior (41 [50%]), generalized hind limb weakness (13 [46%]), vomiting (13 [46%]), stiffness (8 [29%]), ataxia (7 [23%]), and tremors or fasciculations (7 [25%])
- The duration of clinical signs ranged from 1 to 33.25 hours (mean ± SD, 14.4 ± 2 hrs)
- 20/28 hospitalization: IV methocarbamol, anti-emetic

Walnut (black walnut tree)

- 65/93 (70%) cases: walnuts or hulls
- Commonly in September (n = 11), October (16), and December (8)
- Clinical signs in 40 of 65 (62%) cases
- Time to onset observed (n = 37 dogs) ranged from 0.02 to 192 hrs
- Most commonly reported clinical signs: vomiting (31 of 65 [48%], lethargy/subdued behavior (6 [9%]), diarrhea (5 [8%]) and anorexia (4 [6%])
- 15/65 (23%) developed neurological signs: lethargy, disorientation, tremors or fasciculations, ataxia, seizures, and generalized or hind limb weakness
- 17/65 (26%) dogs in this group were treated at a veterinary hospital
- IV or SC fluid administration (n = 6) and antiemetics (2)

Walnut (black walnut tree)

- Frequency of neurologic or musculoskeletal signs in each group
 - Wood 26/28 [93%]
 - Nuts and hulls 15/65 [23%]
- These signs were significantly (P < 0.001) more common in dogs that ingested wood compared to nuts and hulls
- The relative risk of developing neurologic or musculoskeletal signs after ingestion of black walnut wood in dogs was 4.02 times that for dogs that consumed nuts or nut hulls

Xylitol

- Clinical signs in 39 dogs (20%)
 - 24 did not have clinical signs in hospital
 - 9 were not hospitalized
 - 6 continued to have clinical signs in hospital (4/6 vomiting)
- 153/192 dogs = asymptomatic at presentation, 2 developed CS (vomiting)
- Diarrhea (1), partial seizure (1)
- Dogs that developed clinical signs ingested a significantly (P = 0.02) higher estimated dose of xylitol (0.49 g/kg; range 0.12–2.13 g/kg) than those that were asymptomatic (0.30 g/kg; range 0.03–3.64 g/kg)

Estimated xylitol dose was based on 0.5 g/piece or 1 g/piece
Xylitol

Blood glucose information for 192 dogs

<table>
<thead>
<tr>
<th>Treatment</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apomorphine</td>
<td>56.3</td>
</tr>
<tr>
<td>IVF</td>
<td>43.8</td>
</tr>
<tr>
<td>AC*</td>
<td>27.6</td>
</tr>
<tr>
<td>Hepatoprotectants</td>
<td>25.5</td>
</tr>
<tr>
<td>Dextrose</td>
<td>21.3</td>
</tr>
<tr>
<td>H2O2</td>
<td>14.1</td>
</tr>
<tr>
<td>Gastroprotectants</td>
<td>10.4</td>
</tr>
<tr>
<td>Anti-emetics</td>
<td>4.7</td>
</tr>
</tbody>
</table>

* The median duration of hospitalization was 18 hours (n = 122; range 1-70 hours)
* All dogs survived to discharge
* 158 were known to be alive at 28 days

Blood glucose information in 30 hypoglycemic dogs (BG <60mg/dL)

<table>
<thead>
<tr>
<th>Initial BG (mg/dL)</th>
<th>Duration of BG</th>
<th>Time to lowest BG</th>
<th>Lowest BG (mg/dL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median</td>
<td>55.5</td>
<td>3.0hrs</td>
<td>0.5hrs</td>
</tr>
<tr>
<td>Range</td>
<td>15-117</td>
<td>1-27hrs</td>
<td>0-30hrs</td>
</tr>
<tr>
<td># dogs evaluated</td>
<td>30</td>
<td>28</td>
<td>30</td>
</tr>
</tbody>
</table>

Blood glucose information in 192 dogs

<table>
<thead>
<tr>
<th>Initial BG (mg/dL)</th>
<th>Duration of BG</th>
<th>Time to lowest BG</th>
<th>Lowest BG (mg/dL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median</td>
<td>86</td>
<td>0 hrs</td>
<td>2hrs</td>
</tr>
<tr>
<td>Range</td>
<td>15-185</td>
<td>0-27hrs</td>
<td>0-58hrs</td>
</tr>
<tr>
<td># dogs evaluated</td>
<td>178</td>
<td>138</td>
<td>139</td>
</tr>
</tbody>
</table>

* A majority of dogs (n = 137, 71.3%) had a serum biochemistry profile performed. The most common biochemical abnormality was an increase above the upper end of the reference interval for ALT and/or tBR (n = 30; 21.9%)
* Most dogs had a mild increase in ALT (200 U/L, n = 12), though 4 dogs had an ALT > 800 U/L
* RECHECK: Six dogs had increased liver values, though all values had decreased from hospitalization and all dogs were clinically normal on recheck

Cope RB. A Screening study of xylitol binding in vitro to activated charcoal. Vet Hum Toxicol. 2004; 46(6); 336-7
When in doubt, call 800-213-6680

- Something you’re not familiar or comfortable with
- Odd clinical signs
- Animals with preexisting disease

PET POISON HELPLINE

Sign up for...

Quarterly Newsletters

Video Series

info@petpoisonhelpline.com

Tox Goodies!
Free to order: info@petpoisonhelpline.com

Our iPhone app
Details 200+ toxins
$1.99

PAWS ON SAFETY:
One Minute Pet Clinic™
Thank you for attending!

CE credit FAQs:

1. When will I get my CE certificate? We’ll email it to you within 24 hrs.
2. I attended the webinar but wasn’t the person who logged in. Can I still get interactive CE credit? Yes. Send your name and email address to info@petpoisonhelpline.com by June 8, 2016 (strict deadline).
3. Can I watch the recorded webinar online for CE credits? Yes. You can receive non-interactive CE credits. Go to the “For Vets” page on our website, www.petpoisonhelpline.com for more info.

Comments? Questions? Email us! info@petpoisonhelpline.com