Let's Chew the Fat: Updates on the Use of Intravenous Lipid Emulsion

Ahna Brutlag, DVM, MS, DABT, DABVT
Associate Director of Veterinary Services & Sr. Veterinary Toxicologist
Pet Poison Helpline
abrutlag@petpoisonhelpline.com
Adjunct Assistant Professor
Dept. Veterinary Biomedical Sciences
College of Vet. Med., University of Minnesota

Whole Pet from Nationwide
Carol McConnell, DVM, MBA
Chief Veterinary Officer

The best pet insurance plan ever!

It's a new day for pet insurance. Whole Pet with Wellness is a true industry game-changer: If you examine it, prescribe it, treat it or administer it, we'll cover it.

Clients get back 90% on everything from Bordetella to bilateral ACL surgeries; from dental cleanings to dysplasias. It's serious coverage—which means serious business for you.

Quite frankly, it's the best pet insurance plan ever made. And it's only from Nationwide.
Introducing Whole Pet with Wellness!

Coverage Highlights:

- One annual deductible—not per incident
- 90% reimbursement on veterinary expenses
- All veterinary exams including specialty and emergency visits
- All hospitalization and surgeries including preventive and elective procedures
- All injuries, illnesses, and cancer including hereditary and congenital conditions
- All diagnostic testing including x-rays, MRIs, CAT scans and ultrasounds
- All prescribed medications, nutritional supplements and therapeutic diets
- All preventive care including vaccinations, teeth cleaning and spay/neuter

It’s easier to tell you what we don’t cover:

- Pre-existing conditions
- Boarding
- Grooming
- Tax
- Waste

Speaker Introduction

Ahna G. Brutlag, DVM, MS, DABT, DABVT

Associate Director of Veterinary Services
Senior Veterinary Toxicologist
Pet Poison Helpline
Minneapolis, Minnesota

Adjunct Assistant Professor
College of Veterinary Medicine
University of Minnesota
What is Pet Poison Helpline?

- 24/7 animal poison control center
- Veterinary & human expertise
 - 20 DVMs, 35 CVTs
 - DABVT, DABT
 - DACVECC
 - DACVIM
 - 7 PharmDs
- Case fee of $49 includes
 - Unlimited consultation
 - Fax or email of case report

Educational center
- Free webinars (archived)
- Tox tools
 - Wheel of Vomit
 - Pot of Poisons (toxic plants)
- Textbook
- iPhone app
- Newsletters for vet professionals
- Free resources for clinics
 - Videos
 - Electronic material
 - Clings

Today’s topics
- ILE basics
- MOAs
- Dosing/administration
- Adverse effects
- Review of literature
 - Focus on 2014-2016

What is Intravenous Lipid Therapy?

http://ccm.ucdavis.edu/cpl/Histo%20Art/artery.jpg
Life saving fat!

- Intravenous lipid emulsion (ILE or IVLE)
- Intravenous fat emulsion (IFE)

Uses:
- Component for nutritional therapy (1960s)
 - PPN
 - TPN
- Vehicle for drug delivery (i.e., lipid emulsions)
 - Antidote for fat-soluble toxicant poisoning

Intravenous Lipid Basics

- Sterile, non-pyrogenic
- 10, 20, 30% solution
- Typically: soybean oil in water
 - Safflower oil, olive oil, fish oil
- Usually isotonic
- pH neutral
- USP requirements: pH of ILE between 6-9
- Shelf life up to 2 years
- pH decreases with aging
- Physical/chemical stress decreases shelf life

Historical experimental data

- Weinberg et al. (2003) with bupivacaine-induced cardiotoxicity in dogs (n=12).
 - Dose bupivacaine 10 mg/kg over 10 seconds
 - Circulatory collapse in mean of 7 min: HR <10 bpm, MAP <30 mmHg
 - All patients ventilated with O₂, internal cardiac massage X 10 minutes
 - ILE vs. saline (4 mL/kg; followed by 0.5 mL/kg/min X 10 min)
 - Saline: all died
 - ILE (all 6 dogs):
 - Normal sinus rhythm in 5 min
 - MAP >30 mmHg in 10 min
 - BP and HR @ baseline in 30 min
Multi-modal MOAs

• Toxin capture & release (intravenous partition)
 – Lipid "sink" vs "shuttle"
 – Transient capture in lipid-laden plasma
 – Rapid re-distribution to other organs

• Direct cardiac effects—improves cardiac output
 – Accelerate unbinding of drug from ion channels (i.e., bupivacaine)
 – Volume contributions & positive inotropic effect of ILE
 – Lipid metabolism, mitochondrial processing, nitric oxide modulation

• Increased toxicant metabolism
 – Increase in microsomal (e.g., hepatic) metabolism

ILE Dosing

• No optimal dosing regime established

• Traditional
 – 3.5 - 4 ml/kg IV bolus over 1-3 minutes, followed by 0.25 ml/kg/min IV, for 30-60 minutes
 – Adapted from human acute local anesthetic intoxication
 – Additional doses:
 – 1.5 ml/kg IV every 4-6 hours for the initial 24 hours.
 – Check for gross lipemia using capillary tubes prior to next dose
 – If after 3-5 doses of administration and no clinical response is seen, it can be discontinued

• What about ingested toxicants?
 – New suggestion from human literature (Fettiplace et al., 2015)
 – 2.25 mL/kg initial load
 – 0.025 mL/kg/min CRI for up to 6.5 hrs

Optimal dose of ILE?

• Perez et al. Determining optimal dose of ILE in rodent model of verapamil toxicity.
 – 18.6 mL/kg dose → greatest benefit to survival
 – 24.8 mL/kg → better improvement in MAP, BE, HR, but no added benefit to survival
 – Delivered at 2.48 mL/min.

• 4 mL/kg & 7 mL/kg boluses in canine studies

• Very wide variety in literature

• LD_{50} rat, IV = ~67 mL/kg during rapid infusion

ILE Administration & Handling

• Peripheral IV catheter
 • Ideally, dedicated catheter/line
 • No reported adverse effects with non-dedicated catheter
 • Consider 1.2 micron TPN filter
• Strict aseptic technique
 • Sterile gloves when preparing infusion/changing lines
• Refrigerate unused portion; discard after 24 hours

Which toxicants will respond to ILE?

• Lipid soluble toxicants!
 • LogP (AKA partition coefficient) > 1 or 2
 • The greater (more positive) the LogP, the more lipophilic/soluble in hydrophobic solutions
 • High volume of distribution (Vd)
 • The greater the Vd, the more the drug distributes into fat and muscle, away from the serum
 • These agents are less likely to be removed via hemodialysis
• Examples:
 • Verapamil: LogP = 3.8, Vd = 4.5
 • Bupivacaine: LogP = 3.4, Vd = 0.7
 • Ethanol: LogP = -0.1, Vd = 0.5

Reported Adverse Events

(causeality not always proven)

• People
 • Pancreatitis (Bucklin, 2013)
 • ARDS (Martin, 2014)
 • Fat overload syndrome (FOS) can lead to hyperlipidemia, hepatomegaly, fat embolism, icterus, & hemolysis.
 • Other: Anaphylaxis, fever, vomiting, tachypnea, dyspnea, acute lung injury, phlebitis.
• Rats: (Hiller et al, 2010)
 • Triglycerides were elevated immediately after infusion but returned to baseline by 48hrs.
 • Amylase, AST, BUN at all doses.
 • Histologic diagnosis of myocardium, brain, pancreas, and kidneys was normal at all doses.
 • Microscopic abnormalities in lung and liver were observed at 60 and 80 mL/kg; histopathology in the lung and liver was worse at 1 hr than at 4 and 24 hrs.
• Dogs:
 • Hemolysis in 1 dog (FOS?). Recovered after transfusion & supportive care (Gwaltney-Brant & Meadows, 2012)
Reported Adverse Effects
(causality not proven)

• Cats
 – Unilateral facial pruitis 10 h post ILE. Treated with chlorpheniramine, resolved in 8 hrs. (Peacock, et al., 2015)
 – Received other drugs in comb with ILE
 – Gross lipemia, transient (Peacock)
 – Gross lipemia >48 hrs (Seitz & Burkitt-Creedon, 2016)
 – Suspected corneal lipidosis (Seitz & Burkitt-Creedon, 2016)
 – 42 hrs after ILE, symmetrical, pannoreal white opacity
 – No uveitis, no aqueous flare. Fundic exam precluded.
 – ILE dose = 31.5 mL/kg over 120 min

Permethrin Literature

• Feline literature only
 • 7 articles with ILE, 2012-2016*
 – 6 case reports
 – 1 prospective, randomized study
 • Source: Most canine topical spot-on (~45% permethrin)
 • LogP of permethrin = 5.7-6.5

• Case reports
 – Wide variety of ILE dosing
 – 10-61 mL/kg (20% ILE)
 – Some with inappropriate initial management
 – Methocarbamol dosing too low
 – Only benzodiazepines given for tremors
 – Does not always/often stop tremors
 – Sometimes several hours until improvement
 – Some recurrence of signs/whospitalization

Permethrin/ILE Case Reports: Critique

• Some use permethrin with methocarbamol
 – LogP of methocarbamol = 0.55
• Other concomitant drugs (LogP)
 – Diazepam (2.82), midazolam (3.3), dexmedetomidine (2.8) (possibly helpful), phenobarbital (1.47), propofol (3.8)
• None have blood concentrations so cannot...
 – Confirm exposure
 – Confirm “lipid sink”
• Difficult to obtain meaningful data
• Clinical sign interpretation very subjective
Prospective, multi-center, randomized, controlled clinical trial
March, 2011-June, 2012
Western Australia (4 states)
- 1 vet school (Murdoch University)
- 12 private ERs
34 cats with suspected permethrin poisoning
Hypothesis: Clinical signs would improve with ILE vs saline control.

Permethrin/ILE Clinical Trial
(Peacock, et al. 2015)

Design clinical staging system, Stage A-F

- Inclusion criteria:
 - Direct application of permethrin spot-on by owner and stages C-F
- Exclusion criteria:
 - Previous treatment
 - Stage A or B (asymptomatic or very mild)
 - Body condition score 7-9 or diabetes mellitus, cardiac or renal disease
- Patient randomized to control or ILE. Not blinded.
- No significant difference between test & control group in:
 - Age, breed, sex, or weight
 - Time of application to presentation (median 14 and 13.5 hrs)
 - Clinical signs
Permethrin/ILE Clinical Trial
(Peacock, et al. 2015)

Treatment
- Tremors: Methocarbamol IV to effect (starting dose, 40 mg/kg)
- Seizures: Diazepam IV to effect (starting dose, 0.5-1 mg/kg)
- Then, dermal decontamination: Clip application site, bathe

Control Group (n = 14)
15 ml/kg, saline, IV over 60 min

Test Group (n = 20)
15 ml/kg, 20% ILE, IV over 60 min (equivalent to 0.25 ml/kg/min)

Allowed to use additional drugs or fluids as needed.

Additional agents given*

Control (n = 14)
- Methocarbamol (14)
- Diazepam (7)
- IV fluids (6)
- Alphaxone (1)
- Butorphanol (1)
- Midazolam CRI (2)

Test (n = 20)
- Methocarbamol (20)
- Diazepam (10)
- IV fluids (10)
- Alphaxone (3)
- Butorphanol (2)
- Acepromazine (1)
- Medetomidine (1)
- Phenobarbitone (1)
- Propofol (1)

*All doses listed in the article
* No statistical difference between groups

Permethrin/ILE Clinical Trial
(Peacock, et al. 2015)

- Significant results
 - ILE group had less severe signs (p < 0.001)
 - ILE group reached Stage A or B faster (p = 0.006)
 - 5.5 hrs (ILE) vs 16.2 hrs
- No significance
 - Duration of hospitalization (p = 0.087)
 - 19.4 hrs (ILE) vs 27.5 hrs

Relative frequency of distress signs or death compared to cats with permethrin poisoning in cats randomized to receive 0.9% saline (control) or intravenous lipid emulsion (ILE) treatment. The distribution of relative frequency between the two groups was significantly different (p < 0.001).
Permethrin/ILE Clinical Trial
(Peacock, et al. 2015)

• Significant results
 – ILE group had less severe signs (p = <0.001)
 – ILE group reached Stage A or B faster (p = 0.006)
 • 5.5 hrs (ILE) vs 16.2
• No significance
 – Duration of hospitalization (p = 0.087)
 • 19.4 hrs (ILE) vs 27.5 hrs

Relative frequencies of clinical stage at each time point in cats with permethrin toxicoses randomized to receive 0.9% sodium chloride (control) or intravenous lipid emulsion (ILE) treatment. The distribution of relative frequencies between the two groups was significantly different (P < 0.001).

Permethrin/ILE Clinical Trial
(Peacock, et al. 2015)

• Study limitations
 – Not blinded
 – No true exposure confirmation
 – No blood permethrin concentrations
 – Cannot determine if lipid “sink/shuttle” occurred
 – Cannot correlate clinical signs to blood concentrations
 – Cannot correlate doses of concomitant drugs to severity/resolution of signs
 – Cannot determine if ILE or any drugs were re-dosed
 – Cannot determine when other agents were given following T=0
• What can we learn?
 – ILE appears well tolerated in this cohort at 15 ml/kg over 60 min
 – It may hasten recovery when used as an adjunctive therapy
 – May be more economical (lipid is cheaper than methocarbamol)

Ivermectin – 20 cats

• Cats
 – 20 cats given 4 mg/kg ivermectin SQ for ear mites (20x overdose)
 – Log P = 5.83
 – 2 h post, all asymptomatic but treated with ILE
 – 1.5 mL/kg bolus (all cats) + 0.25 mL/kg/min CRI x 30 min for 4 Sphynx cats
 – 6 cats developed signs consistent with intoxication 14-48 h after overdose
 – Mydriasis, ataxia, incoordinated weakness, nystagmus, tremors, etc.
 – No serum concentrations measured

Ivermectin – 20 cats

<table>
<thead>
<tr>
<th>Day</th>
<th>Ivermectin dose</th>
<th>Clinical signs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4 mg/kg SQ</td>
<td>No clinical signs</td>
</tr>
<tr>
<td>2</td>
<td>4 mg/kg SQ</td>
<td>No clinical signs</td>
</tr>
<tr>
<td>3</td>
<td>4 mg/kg SQ</td>
<td>No clinical signs</td>
</tr>
<tr>
<td>4</td>
<td>4 mg/kg SQ</td>
<td>No clinical signs</td>
</tr>
<tr>
<td>5</td>
<td>4 mg/kg SQ</td>
<td>No clinical signs</td>
</tr>
<tr>
<td>6</td>
<td>4 mg/kg SQ</td>
<td>No clinical signs</td>
</tr>
<tr>
<td>7</td>
<td>4 mg/kg SQ</td>
<td>No clinical signs</td>
</tr>
<tr>
<td>8</td>
<td>4 mg/kg SQ</td>
<td>No clinical signs</td>
</tr>
<tr>
<td>9</td>
<td>4 mg/kg SQ</td>
<td>No clinical signs</td>
</tr>
</tbody>
</table>

ILE, intravenous lipid emulsion; CR, continuous rate infusion. Boli: 1.5 mL/kg. 4 mg/kg, 20x overdose.
Ivermectin – 20 cats

- Authors’ conclusions:
 - Incidence/severity of intoxication may have been higher if ILE were not preemptively given
 - Low BCS associated with increased severity
 - Feline half-life of ivermectin = 2.5 +/-2.2 days
 - Acknowledge that recovery time is as expected given half-life.
 - Maybe no effect on duration of recovery?
 - Call for laboratory analysis re: ILE/ivermectin

Ivermectin – 1 cat, case report

- Suspected ingestion of equine horse dewormer (unreported amount)
- PE: laterally recumbent, tachycardic, deepresp. excursions, hyperesthetic
- No response to supportive care after 24 hrs
- ILE x 2 doses
 - 30 min post = breathing deeper, more regular
 - 9 hr post = marked improvement in mention
 - Transient Spermia
- Discharged home on day 4 with mild ataxia
- Owner reports cat is normal by day 5
- Limitations
 - Unknown dose
 - No serum ivermectin testing
- Recovery time within realm of non-ILE cases

Ibuprofen

- Ibuprofen
 - 3 yo, 19 kg, mixed breed dog
 - 1,850 mg/kg Ibuprofen
 - Some pills present in emesis
 - Day 3-4: tachycardia, coma, cardiovascular instability
 - Transient coagulopathy, coagulopathy, clots, incoagulable, 1-2 hms/kg followed by 1L/1 of 5
 - 2 h post ILE, slight improvement level of consciousness
 - Day 2 = coarse ataxia, GI bleeding, icteric
 - Day 3-4 = Continued ICU care
 - Day 5 = discharged
- Serum Ibuprofen concentration
 - Baseline (pre ILE) = 190 mg/mL
 - 2 h after ILE dosing = undetectable
- Concern with results?
 - Serum toxicant concentration should increase due to “lipid sink” (i.e. drug moves into vesicles out of tissue) unless lipid partition was removed
 - Data do not support “lipid sink” theory
 - Where is ibuprofen?

Log P = 3.5-4.0
Naproxen

• Study pursued based on ibuprofen article
• $\text{LogP} = 3.18$
• Whole serum naproxen concentrations:

<table>
<thead>
<tr>
<th>Case</th>
<th>0 hour post, μg/ml</th>
<th>1 hour post, μg/ml</th>
<th>3 hours post, μg/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>73</td>
<td>12</td>
<td>7.2</td>
</tr>
<tr>
<td>2</td>
<td>99</td>
<td>19</td>
<td>7.2</td>
</tr>
<tr>
<td>3</td>
<td>84</td>
<td>21</td>
<td>18</td>
</tr>
</tbody>
</table>

• Data do not support lipid sink theory
• PPH does not currently recommend ILE for most NSAID intoxications.

Summary

• Use ILE as adjunctive treatment only
• Not routinely recommended for asymptomatic patients, especially following ingestion
• Limited number of experimental studies and clinical trials. More evidence needed.
• Published studies require careful interpretation
• Adverse effects appear rare but may be under-reported

When in doubt, call
800-213-6680

• Something you’re not familiar or comfortable with
• Odd clinical signs
• Animals with preexisting disease
Don’t forget...

No Lilies for Kitties!

Please help us spread the word. Visit www.noliliesforkitties.com for more information!

Tox Goodies!

Free to order: info@petpoisonhelpline.com

Blackwell’s Five-Minute Veterinary Consult Clinical Companion: Small Animal Toxicology

2nd Edition

Drs. Lynn Hovda, Ahna Brutlag, Robert Poppenga, Katherine Peterson

- Provides concise, bulleted information focused on the most important facts needed when treating a poisoned cat or dog
- Carefully organized for ease of use in an emergency, with important toxicants arranged alphabetically within categories
- Details clinically relevant information on the most common toxicants encountered by small animals
- Presents a wealth of color photographs to aid in plant identification
- Includes 14 new topics to this edition covering cyclosporine A, sleep aids, tamrolimus, bath salts, synthetic marijuana, poisonous lizards, imidacloprid, spring bulbs, and sodium monofluoroacetate
Thank you for attending!

CE credit FAQs

1. When will I get my CE certificate? We'll email it to you within 24 hrs.
2. I attended the webinar but wasn’t the person who logged in. Can I still get interactive CE credit? Yes. Send your name and email address to info@petpoisonhelpline.com by 1pm central time on April 13, 2016 (strict deadline).
3. Can I watch the recorded webinar online for CE credit? Yes. You can receive non-interactive CE credit. Go to the “For Vets” page on our website, www.petpoisonhelpline.com for more info.

Comments? Questions? Email us! info@petpoisonhelpline.com

Permethrin Article References

- Kuo J and Olidamooy A. Adjunctive therapy with ILE and methocarbamol for permethrin toxicity in 2 cats. JVCC, 2013
- Bruckner M & Schwedes CS. Successful treatment of permethrin toxicosis in two cats with ILE. Tierarztliche Praxis Kleintiere, 2012
- Haworth MD & Smart L. Use of ILE in 3 cases of feline permethrin toxicosis. JVCC, 2012
Early human data

• Primarily case reports
• First case report 2006
 – Nerve block gone bad (bupivacaine and mepivacaine) → seizures and CPA
 – 20 minutes of CPR
 – 1.2 mL/kg of 20% ILE
 – Return of spontaneous circulation (ROSC) shortly after ILE bolus
 – Followed by CRI (0.5 mL/kg/min, IV, over 2 hours)
 – Survived (right coronary artery occlusion incidentally)

Human data

• Lethal dose of 2 meds:
 – Bupropion (monocyclic antidepressant)
 – Lamotrigine (Lamactil) (phenyltirazine derivative for seizures and bipolar disease)
 – 52 minutes of unsuccessful life support
 – Bolused 1.8 mL/kg of 20% ILE → immediate ROSC
 – Buproprion plasma levels revealed a peak plasma concentration post ILE, supporting lipid sink. No change in lamotrigine.

Veterinary data: experimental

• First ILE study in 1974 in rabbits
 – In-vivo and in-vitro
 – Chlorpromazine 30 mg/kg, IV
 – Control: All died
 – ILE: All lived
 – In-vitro:
 • ILE + rabbit blood → ↓ fraction of free chlorpromazine

• Similar study in rabbits with cyclosporine
 – ILE ↓ total body clearance and V_d

• Potential benefit for: bupivacaine, propranolol, thiopental, verapamil, beta-blockers, clomipramine, and chlorpromazine.

Veterinary data: experimental

- Weinberg et al. (1998) with bupivacaine-induced asystole in rats.
 - ILE ↑ dose of bupivacaine to produce asystole
 - ILE treated group: ↑ LD₅₀ by 48%
 - ↑ survival in rats

Veterinary data: clinical study

- Moxidectin toxicity
 - 16-week old Jack Russell terrier (3.2 kgs)
 - 10 hours after exposure, tx with ILE (Intralipid) at 2 mL/kg bolus IV, followed by 4 mL/kg/hour X 4 hours (0.07 mL/kg/min)
 - Repeated 25 hours after exposure at 0.5 mL/kg/min for 30 minutes
 - No blood levels evaluated